

Japan Quality

JTEKT CORPORATION

JTEKT Koyo TOYODA

CAT. NO. B1013E

World's first successful practical application of ceramic bearings

"For ceramic bearings, the answer is KOYO"

Introduction to Application Examples

1	Machine tools ·····	
2	Film manufacturing equipment ······	3,4
3	Power generation equipment	
4	Industrial furnaces	5,6
5	Production equipment	7,8
6	$Semiconductor\ manufacturing\ equipment\cdots$	9,10,11
7	Motor, Industrial machinery	12
8	Medical equipment	13
9	Home electrical appliances	·· 13,14
10	Outer space, Leisure	14
11	Automobiles, Motorcycles	·· 15,16

Features

Properties of ceramic materials

1	Material characteristics 1	7
2	Rolling fatigue of ceramic materials 1	8
3	Ceramic materials suitable for rolling bearings 1	9
4	Composition of ceramic bearings 1	9

Production Process

Cei	ramics Production Process	
1	Production Process	20

Product Details

Ceramic Bearing Product Details

1	Rolling fatigue life of ceramic bearings 21
2	Static load rating of ceramic bearings 22
3	Impact strength of ceramic bearings 23
4	Fitting of ceramic bearings 24

Performance

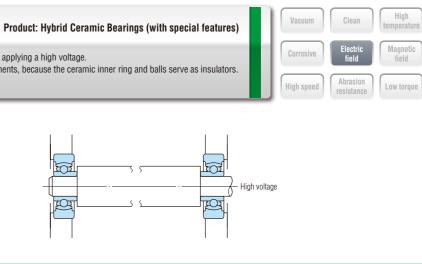
Ceramic Bearing Capacities

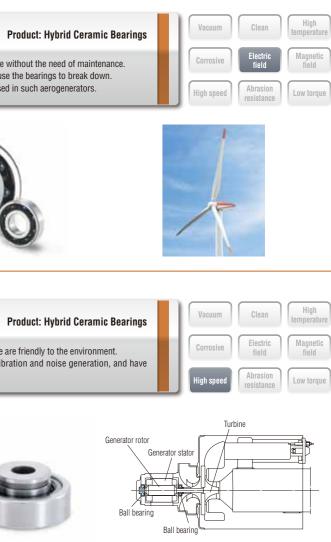
1	Corrosion resistance 25,26
2	Non-magnetic performance 26
3	Insulation ····· 27
4	High-speed performance 28

Product Introduction

1 Ceramic balls ·····		29
-----------------------	--	----

CERAMIC BEARINGS


1



3

Photographic Film Manufaturing Equipment A photographic film production line treats film surfaces by applying a high voltage Hybrid Ceramic Bearings are widely used in such environments, because the ceramic inner ring and balls serve as insulators. Insulation under high voltage environments 501 म्यु Rotational speed: 200 min⁻¹ Temperature: Room temp. Lubrication: Grease **Power generation equipment CERAMIC** BEARINGS Wind Turbine Generator Wind Turbine Generator are strongly required to operate for extensive periods of time without the need of maintenance. However, bearings used in generators are subject to electrical pitting, which may cause the bearings to break down. Hybrid Ceramic Bearings, which have superior durability and reliability, are widely used in such aerogenerators. • Prevention of electrical pitting • Extension of grease service life (three times longer than Koyo steel bearings) Rotational speed: 2700 min-1 Temperature: Below freezing point to approx. 60°C Lubrication: Grease Micro Gas Turbine Generator The world's smallest gas turbine generators emit clean exhaust emissions and hence are friendly to the environment. Hybrid Ceramic Bearings are used in these generators because they are low in vibration and noise generation, and have excellent high speed performance. Improved reliability in high speed rotation Rotational speed: 10 000 min-

 $(d_m n = 2.22 \times 10^6)$

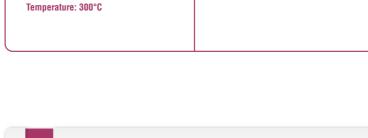
Industrial furnaces

CERAMIC BEARINGS

Product : Hybrid Ceramic Linear Motion Ball Bearings

Substrate bonding press jigs for use in furnaces must be low in particle emissions and have a long service life under high temperature conditions. The Clean Pro Hybrid Ceramic Linear Motion Ball Bearings are widely used for such jigs.

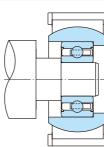
Linear motion


Δ **Tube Annealing Furnace Guide Rolls**

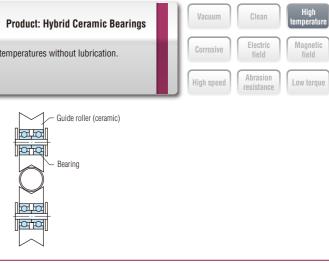
The guide roll bearings installed inside tube annealing furnaces are used under high temperatures without lubrication. Hybrid Ceramic Bearings are suitable for such applications.

• Compatible with high temperature environments

Rotational speed: 300 min⁻¹



3 **Baking Furnace Cars** Product: High Temperature Hybrid Ceramic Bearings In the kiln that bakes fluorine resin onto the heat rollers of copying machines, conveyor bearings must be low in particle emissions under high temperatures. Because it is structurally difficult to mount bearings accurately, High temperature Hybrid Ceramic Bearings are used for this application, along with aligning rings. High speed resistance Low torque


5

• Compatible with high temperature environments

Rotational speed: 3 to 10 min-Temperature: 400 to 500°C Lubrication: Graphite

/acuum	Clean	High temperature
orrosive	Electric field	Magnetic field
	Abrasion	

Production equipment

CERAMIC BEARINGS

5

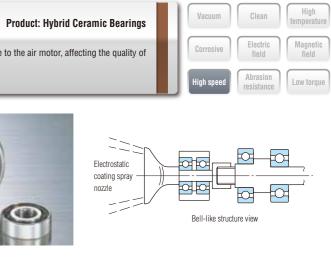
8

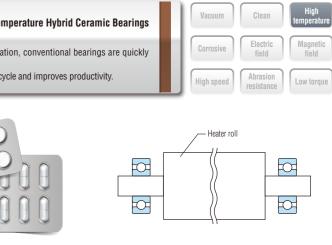
2	Synthetic Fiber Manufacturing Equipn		cuum Clean High temperature
		re applied in such corrosive environments.	rosive Electric Magnetic field field a speed Abrasion Low torque
	osion resistance under acid solu lline solution and water	Yarn	
Tempera	ons ral speed: 20 to 100 min ⁻¹ ature: Room temp. to 90°C ion: Chemical solution	Chemical solution	

5	Jet Electrostatic Coati	ng Machine
	the paint to be coated.	ie, grease may escape from the spray nozzle due t amic Bearings that do not use grease are used.
-	evention of grease scattering evention of paint contamination	B B B B
1	^{ions} inal speed: 20 000 min ⁻¹ ition: Fluorine polyme	

3	DVD Sputtering Equipment	Product: Hybrid Ceramic Bearings		Vacuum	Clean	High temperature		6
	To improve reliability further, Hybrid Ceramic Bearings are used.		1	Corrosive	Electric field	Magnetic field		
				High speed	Abrasion resistanc	e Low torque		

Insulation


Use Conditions Rotational speed: 300 min⁻¹ Temperature: Room temp. Lubrication: Grease



6	Blister Packaging Equ	ipment	Product: High-ten
	As heater roll bearings used in pro damaged. Incorporating high-temperature cera		
	olicable to high-temperature env ntributes to improved productivit		0000
se Condit Temper	ions ature: 250°C		0000

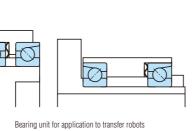
Load: 900N

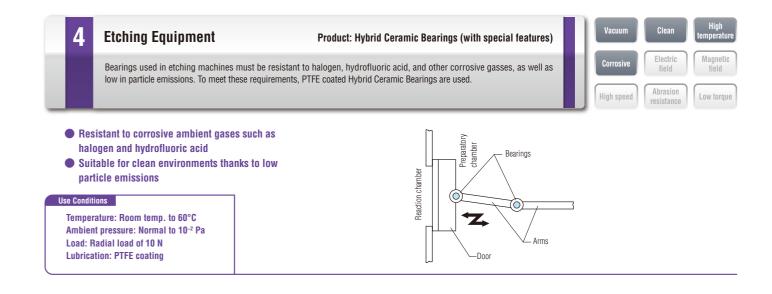
Lubrication: Grease

6 Semiconductor manufacturing equipment

CERAMIC BEARINGS

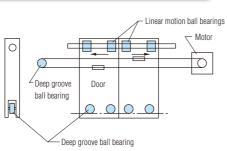
F


Transfer Robot for Semiconductor Product: K Series Full-Complement Hybrid Ceramic Ball Bearings and LCD Manufacturing Equipment For application in transfer robots for semiconductor and liquid crystal manufacturing equipment, bearings are required to be low in particle emissions and have a long service life. Bearings may be delivered incorporated in arm units for improved assemblability and maintainability. Abrasion • Applicable to vacuum environments and clean environments


• Optimal for machine size reduction

Use Conditions

Temperature: Room temp. to 200°C Ambient pressure: 10-3 Pa Lubrication: Grease or clean pro coating

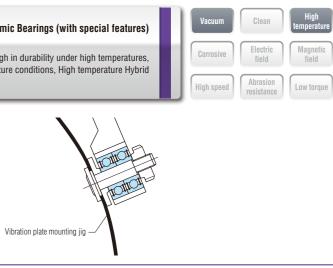

The bearings in semiconductor production electron beam lithography are exposed to strong magnetic fields. Because of their non-magnetic characteristics, Hybrid Ceramic Bearings are used in such machines. Image: Corrosive Image: High speed Image: High speed Image: Corrosive Image: High speed Image: Corrosive Image: Corrosive Image: High speed Image: Corrosive Image: Corrosive Image: High speed Image: Corrosive Image: Corrosive Image: Corrosive Image: Corrosive Image: Corrosive Image: Corrosive Image: Corrosive	2	Electron Beam Lithography	Product: Non-magnetic Hybrid Ceramic	Bearings	Vacuum	Clean	High temperature
Hyg. speed resistance Low torque • Compatible with vacuum, strong magnetic field environments Image: Compatible with vacuum strong magnetic field environments Use Conditions Image: Compatible with vacuum strong magnetic field environments Use Conditions Image: Compatible with vacuum strong magnetic field environments Des Conditions Image: Compatible with vacuum strong magnetic field environments Motational speed: 100 min ⁻¹ Image: Compatible with vacuum strong magnetic field environments Ambient pressure: 10-5 Pa Image: Compatible with vacuum strong magnetic field environments					Corrosive		
field environments Use Conditions Rotational speed: 100 min ⁻¹ Temperature: Room temp. Ambient pressure: 10 ⁻⁵ Pa					High speed		Low torque
Rotational speed: 100 min ⁻¹ Temperature: Room temp. Ambient pressure: 10 ⁻⁵ Pa						(=== <u>)</u>	
Temperature: Room temp. Ambient pressure: 10-5 Pa	Use Conditi	ions					
	Tempera	ature: Room temp.				} (Ţ

Gates in Chemical Vapor 3 Product: Hybrid Ceramic Ball Bearing Clean Pro Linear Motion Ball Bearings **Deposition Equipment** Hybrid Ceramic Ball Bearings and Clean Pro Linear Motion Ball Bearings are widely used for the doors of the chemical vapor Corrosive field field deposition (CVD) equipment.

9

• Applicable to high temperature, vacuum and clean environments

Use Conditions Rotational speed: 10 to 200 min-Temperature: 200°C Ambient pressure: Normal to 10-4 Pa Lubrication: Clean pro coating


	5	Vacuum Evaporator	Product: High Temperature Hybrid Ceramic
		· · · ·	ion of vacuum evaporator are required to be high i ensure a long bearing life under high temperature res are used.
		roved reliability in vacuum and 1 temperature environments	
U	se Conditi	ions	
		nal speed: 1 to 30 min ⁻¹	
		ature: 200 to 400°C t pressure: 10-6 to 10-8 Pa	Vit
		tion: Molybdenum disulfide or silver	

6	5	Spin-dryer for Wafer Cleaning Equipment	Product: Corrosion R
		In semiconductor wafer cleaning processes, wafers are other liquids before drying. Because of their high corrosion resistance, Corrosion Re	
	Cor	asian resistance to solutions such as	

Corrosion resistance to solutions such as cleaning chemicals, rinsing liquids, and distilled water

Rotational speed: 2 000 to 3 000 min⁻¹ Temperature: Room temp. Lubrication: Grease

In the semiconductor multilayer production process, each wafer surface should be treated to maintain evenness. This process uses chemical mechanical polishing equipment, and the cleaner attached to the equipment uses Corrosion Resistant Ceramic Bearings.

Corrosive	Electric field	Magnetic field
High speed	Abrasion resistance	Low torque

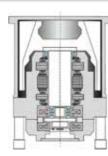
Corrosion resistance to corrosive solutions

Use Conditions	
Rotational speed: 100 min-1	
Temperature: Room temp.	
Lubrication: Fluorine polymer	

CERAMIC BEARINGS **Polygon Scanner Motor** Hybrid Ceramic Bearings, which exhibit superior high speed performance, are widely used in high speed polygon scanner motors. • Excellent reliability in high speed rotation Rotational speed: 26 000 min⁻¹ or higher Lubrication: Grease

Motor, Industrial machinery

7

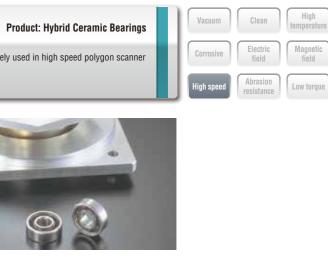

9 Turbo Molecular Pump Product: Full-Complement Hybrid Ceramic Ball Bearings (with special features)

Magnetic bearings are used in turbo molecular pumps driven at extremely high speeds. To protect the blades from fracture in case of a power failure or magnetic failure, touchdown bearing units are used. As touchdown bearings, Full-Complement Hybrid Ceramic Ball Bearings are used to increase the service life of the touchdown bearings under severe hostile conditions.

Improved reliability in vacuum environments

Rotational speed: 20 000 to 60 000 min-1 Ambient pressure: 1 Pa Lubrication: Molybdenum disulfide or silver

Use Conditions

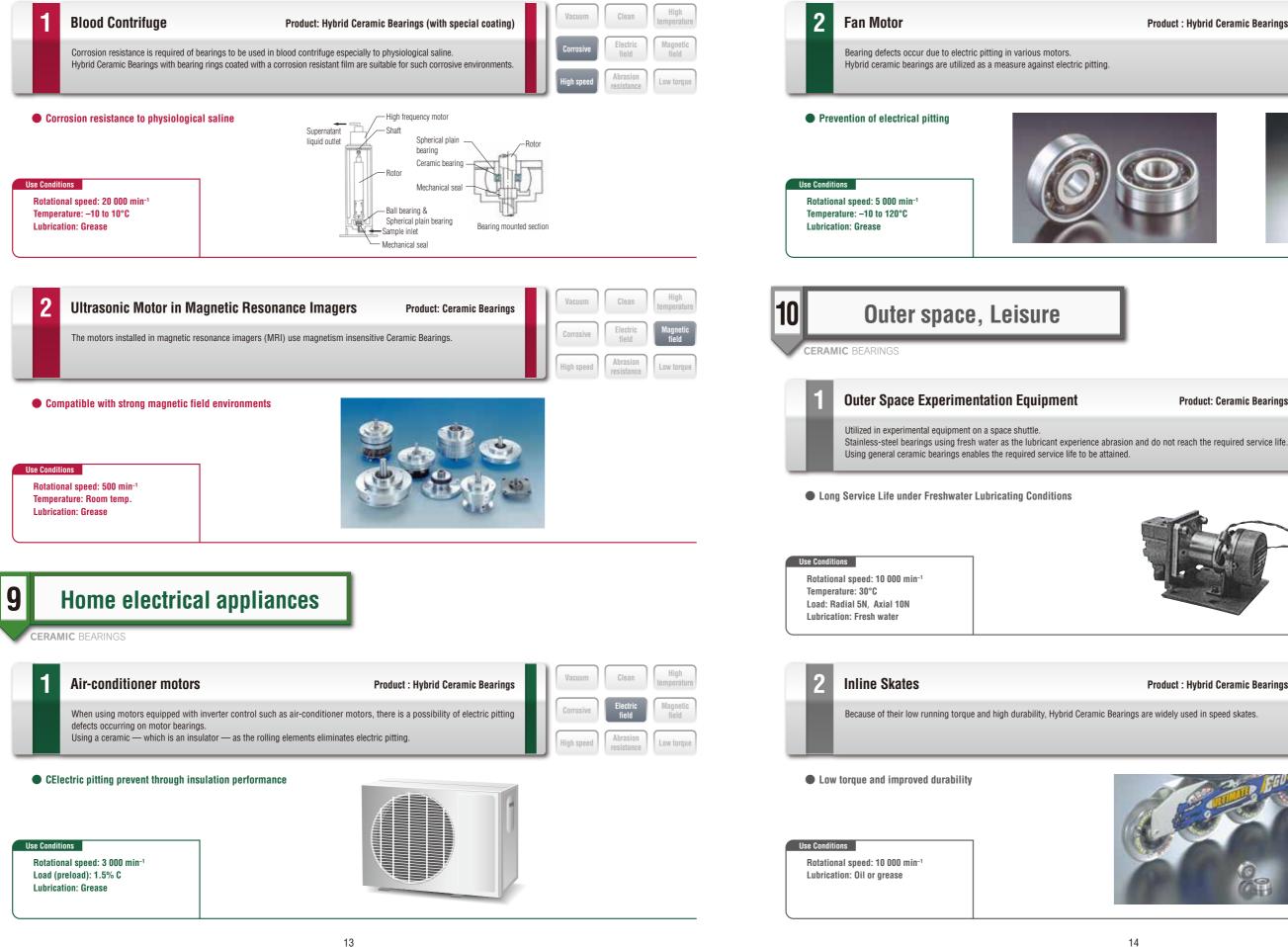

Vacuum	Clean	High temperature
Corrosive	Electric field	Magnetic field
High speed	Abrasion	Low torque

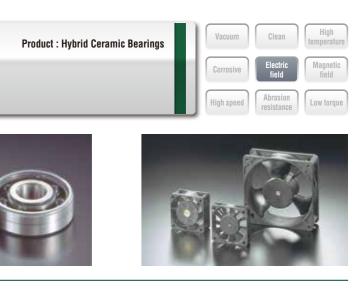
3 Switched Reluctance Motor

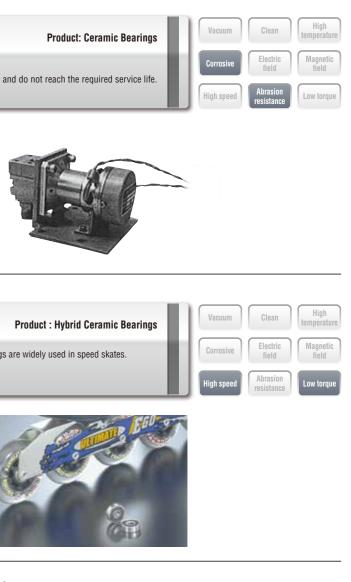
For high speed, high efficiency switched reluctance (SR) motors, which do not use coils or permanent magnets, Hybrid Ceramic Bearings are applied.

• Excellent reliability in high speed rotation

Rotational sneed: 30 000 min-Lubrication: Grease







CERAMIC BEARINGS

Automobiles, Motorcycles

CERAMIC BEARINGS

11

2 Fuel Injection System Co	ntrol Valve	Product: Ceramic B	all	Vacuum	Clean	High temperature
The common rail system (fuel injection sy emissions, is equipped with Ceramic Balls	rstem), which enables diesel engines to feat	ture high power, good fuel economy and l	w	Corrosive	Electric field	Magnetic field
	in the control valves.			High speed	Abrasion resistance	Low torque
Compatible with high pressure fuel inje improved wear resistance and seizure i	esistance	Solenoid valve		ic ball		

5 **Motorcycle Superchargers**

resistance. Additionally, when using hybrid ceramic bearings, high output is achieved even for race-specification motors operating under harsh conditions.

• High-speed performance, heat resistance and abrasion resistance improved

• Contributes to achieving high output supporting race specifications

3	Wheel Bearings for Solar Cars	Product: Hybrid Ceramic Bear	ings	Vacuun	Clean	High temperatur
	Stable operation of the motor section under severe open condition weight reduction, durability and reliability. Suppressing spinning resistance and efficiently transferring the drive		nts in	Corrosiv High spe	e Electric field Abrasion resistance	Magnetic field Low torqu
Aus	stralia: Covered over 3,000km vertically					

- South Africa: Covered over 4,000km
- Rotational speed: 1 000 min⁻¹ Lubrication: Grease


```
Photo: Courtesy of Tokai University
```

Photos: Courtesy of Kawasaki Heavy Industries, Ltd.

Properties of ceramic materials

CERAMIC BEARINGS

Material characteristics

Table 1 below lists the mechanical and physical properties of major ceramic materials used as bearing materials. Table 2 compares silicon nitride and high carbon chromium bearing steel.

• Table 1 Mechanical and physical properties of ceramic materials used as bearing materials

Cera Property Unit	mic Material	Silicon Nitride Si₃N₄	Zirconia ZrO2	Silicon Carbide SiC
Density	g/cm ³	3.2	6.0	3.1
Linear expansion coefficient	K ⁻¹	3.2×10 ⁻⁶	10.5×10 ⁻⁶	3.9×10 ⁻⁶
Vickers hardness	HV	1 500	1 200	2 200
Module of longitudinal elasticity	GPa	320	220	380
Poisson's ratio		0.29	0.31	0.16
Three point bending strength	MPa	1 100	1 400	500
Fracture toughness	MPa•m ^{1/2}	6	5	4
Heat resistance (in atmospheric a	ir) °C	800	200	1 000 or higher
Thermal shock resistance	Ĵ	750 or higher	350	350
Coefficient of thermal conductivity	W/(m·K)	20	3	70
Specific heat	J/ (kg · K)	680	460	670

O Table 2 Comparison of characteristics of silicon nitride and high carbon chromium bearing steel

Property Unit	Silicon Nitride Si₃N₄	High Carbon Chromium Bearing Steel SUJ2	Advantages of Ceramic Bearings
Density g/cm ³	3.2	7.8	Decrease in centrifugal force induced by rolling elements (balls or rollers) \rightarrow Longer service life and reduced bearing temperature rises
Linear expansion coefficient K ⁻¹	3.2×10 ⁻⁶	12.5×10 ⁻⁶	Decreased internal clearance change due to reduced bearing temperature rises \rightarrow Lowered vibration and reduced preload changes
Vickers hardness HV	1 500	750	
Module of longitudinal elasticity GPa	320	208	Less deformation in rolling contact areas → Higher rigidity
Poisson's ratio	0.29	0.3	ingnot rightly
Heat resistance °C	800	180	Retention of superior load carrying characteristics under high temperature
Corrosion resistance	High	Low	Useful in acid or alkaline solutions
Magnetism	Non-magnetic	Ferromagnetic	Decreased rotational fluctuation in ferromagnetic field due to non-magnetization
Conductivity	insulator	conductor	Prevents electrical pitting
Bond	Covalent bond	Metallic bond	Decrease in adhesion (or material transfer) due to oil film thinning in rolling contact areas

17

Rolling fatigue of ceramic materials

The individual ceramic materials were tested for rolling fatigue under oil lubrication and under water lubrication, to evaluate their applicability as bearing material. Figs. 1 and 2 show the results of the tests. The figures indicate that each ceramic material has a certain level of rolling fatigue strength and that silicon nitride has the highest fatigue strength among the ceramic materials tested.

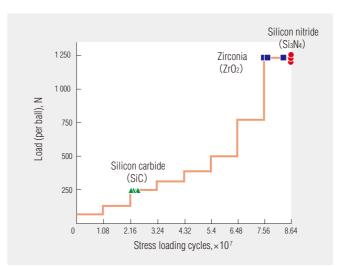


Fig. 1 Comparison in rolling fatigue life under oil lubrication

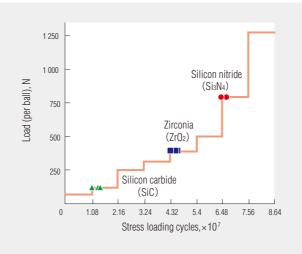
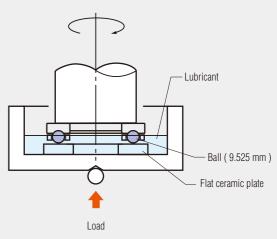
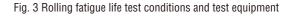



Fig. 2 Comparison in rolling fatigue life under water lubrication

Test conditions


	Oil Iubrication	Water lubrication	
Lubricant	Spindle oil	City water	
Ball	Bearing steel	Ceramic	
Load	Increased in stages at every 1.08×10^7 cycles		
Rotational speed	1 200 min ⁻¹		

Test equipment

Test equipment appearance

Ceramics Production Processes

CERAMIC BEARINGS

Ceramic materials suitable for rolling bearings

Table 3 shows the results of evaluating the ceramic materials in terms of their characteristics and the rolling fatigue strength. Among the ceramic materials tested, silicon nitride is the most suitable as rolling bearing material.

JTEKT uses the silicon nitride produced by the hot isostatic pressing (HIP) method as the standard ceramic material for bearings.

O Table 3 Ratings of ceramic materials as rolling bearing materials

		Application to rolling bearing	igs		
	Rating	Performance and use	Characteristics		
Silicon nitride Si₃N₄	O	Comparable to bearing steel in load carrying capability and service life Suitable for high performance applications	High speed High vacuum Corrosion resistant Heat resistant Non-magnetic High rigidity		
Zirconia ZrO2	0	Useful under a limited load Applicable in highly corrosive chemicals	·Highly corrosion resistant		
Silicon carbide SiC	0	Useful under a limited load Applicable in highly corrosive chemicals	Highly corrosion resistant Highly heat resistant		

Λ

Composition of ceramic bearings

Koyo ceramic bearings are divided into Full Ceramic Bearings (with all components, namely, the outer ring, inner ring and rolling elements, made of ceramic) and Hybrid Ceramic Bearings (with only the rolling elements made of ceramic). The outer ring and inner ring of the Hybrid Ceramic Bearings are made from special steel, including high carbon chromium bearing steel. The cage may be made of a metallic material, resin, or composite material, depending on the intended operating conditions of the bearing.

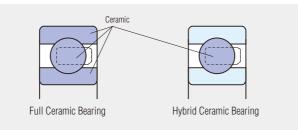
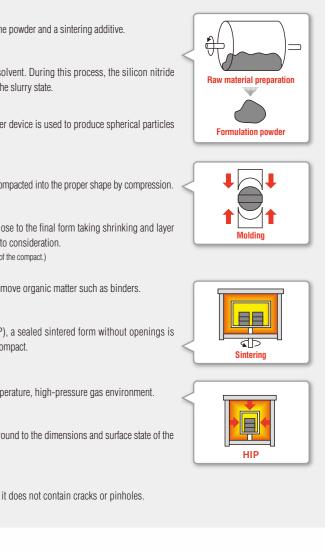


Fig. 4 Composition of ceramic bearings



With silicon nitride, characteristics such as density and strength can vary greatly depending on the manufacturing method and manufacturing conditions. Therefore, it is necessary to strictly control items such as shape, sintering and other processes when manufacturing silicon nitride for ball and roller bearings. The general manufacturing process is shown in Fig. 5.

Raw materials	The raw materials used are silicon nitride (Si ${\scriptscriptstyle 3}N_{\scriptscriptstyle 4})$ fine ${\scriptscriptstyle 1}$
Preparation	The raw material powder is wet blended using a solv powder and sintering additive are mixed evenly in the
Drying and granulation	A binder is placed in the mixed slurry and a sprayer of with a fixed granularity from the slurry state.
Molding	The granulated powder is poured into a mold and com
Machining	Bearing components are machined until a state clos alteration caused by contraction during sintering into (May be omitted depending items such as shape and accuracy of th
Degreasing	Compact is heated in the degreasing furnace to remo
Sintering	In the next process of hot isostatic pressing (HIP), created by applying sufficient gas pressure to the com
HIP	A detailed sintered form is attained in a high- temper
Grinding process	The sintered form attained in the HIP process is grou final product.
Inspection	The surface is checked after processing to ensure it

Fig. 5 Ball and roller Bearing Silicon Nitride Manufacturing Process

Ceramic Bearing Product Details

CERAMIC BEARINGS

Silicon nitride, a ceramic material, is more rigid than high carbon chromium bearing steel; therefore, a bearing including silicon nitride components is subject to a higher contact stress on the area of contact between bearing raceways and rolling elements. Accordingly, to estimate the service life of ceramic bearings, whether the rolling bearing theory is applicable or not is critical.

Basic dynamic load rating

The ISO standard defines the basic dynamic load rating as the pure radial load (for radial bearings), constant in magnitude and direction, under which the basic rating life of 1 million revolutions can be obtained, when the inner ring rotates while the outer ring is stationary or vice versa. The basic dynamic load rating represents the resistance of a bearing against rolling fatigue.

Basic static load rating

The basic static load rating is defined as the static load which corresponds to the calculated contact stress shown below, at the center of the most heavily loaded raceway/rolling elements.

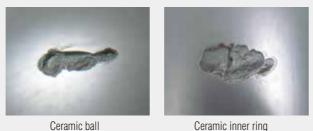
Self-aligning ball bearings	;	4 600 MPa
Other ball bearings	;	4 200 MPa
Roller bearings	:	4 000 MPa

JTEKT defines the dynamic load rating and static load rating of ceramic bearings based on the results of their service life tests, the maximum allowable static load of the ceramic materials, the elastic deformation test results of high carbon chromium bearing steel, and other related data, as shown in Table 4.

Table 4 Load ratings of ceramic bearings

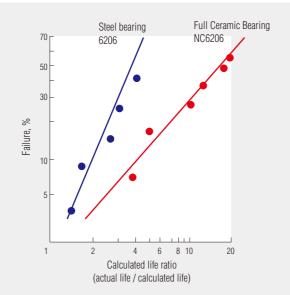
	Full Ceramic Bearing	Hybrid Ceramic Bearing
Dynamic load rating C r	Comparable to steel bearings	Comparable to steel bearings
Static load rating C or	Comparable to steel bearings	85% that of steel bearings

Note) The steel bearings here refer to bearings consisting of rings and rolling elements both made of high carbon chromium bearing steel.


Rolling fatigue life of ceramic bearings

A typical service life test for Ceramic Bearings and steel bearings was performed under the conditions specified in Fig. 7.

The test results showed that the service life of Ceramic Bearings was equal to or longer than that of steel bearings, exceeding the calculated life.


The Ceramic Bearings were found to exhibit flaking (Fig. 6) when their service life terminated. The same phenomenon was observed on the steel bearings whose service life terminated.

Based on these findings, as the dynamic load rating of a Ceramic Bearing, that of a steel bearing of the same dimensions can be used.

Ceramic ball

Fig. 6 Flaking on ceramic ball and inner ring

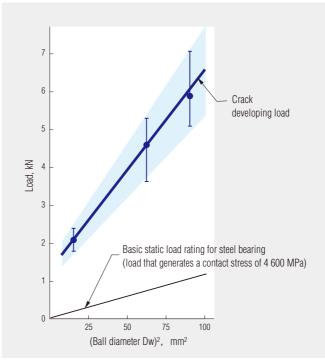
Rolling fatigue test conditions

21

В	learing number	Material (outer/inner rings and balls)		Dimensions, mm	
	NC6206	Silicon nitride (Si ₃ N ₄)		30 × 62 × 16	
	6206	Bearing steel (SUJ2)		(bore × outside dia. × width)	
_					
	Specificat	ion	Condition		
	Load		5 800 N		
	Rotational speed		8 000 min-1		
	Lubrication	n oil	AeroShell Turbine Oil 500		
	Temperati	ure	70 ± 2 ℃		

Fig. 7 Rolling fatigue life of Full ceramic bearings and steel bearings

Static load rating of ceramic bearings


The basic static load rating of a steel bearing represents a load that produces a localized permanent deformation in the rolling element/raceway contact area, impeding smooth rotation.

However, ceramic materials, which are highly rigid, produce little permanent deformation. Therefore, the theory of the basic static load rating for steel bearings is not applicable to ceramic bearings.

Static load rating of Full Ceramic Bearings

When exposed to continuous excessive loads, ceramic materials may break down; however, before breakdown occurs, the materials develop cracking. Fig. 8 compares the load measurements at which ceramic balls developed cracking with the basic static load ratings of steel bearings. Fig. 9 shows the measurement system.

As these results show, the loads at which cracks develop on the Full Ceramic Bearing are far higher than that of the basic static load rating of steel bearings. This means that the basic load ratings specified in the ISO standard can be used as the allowable static loads of the Full Ceramic Bearing.

Static load rating of Hybrid Ceramic Bearings

The theory of the static load rating for steel bearings is applicable to Hybrid Ceramic Bearings because their outer and inner rings are made of steel and accordingly any deformation is permanent.

Table 5 shows the results of a test for which a high carbon chromium bearing steel ball and ceramic ball were pressed against a flat plate of high carbon chromium bearing steel and the resulting permanent deformations (indentation depths) on the flat plate and balls were measured.

Load		Permanent deforma	Permanent deformation		
	kN	Flat plate (bearing steel)	Ball	(sum of averages), mm	
all	0.65	0.5	0.5 —		
ic bi	1.3	1.9	—	1.9	
Ceramic ball	2.6	5.2	—	5.2	
Ce	3.9	9.3	—	9.3	
_	0.65	0.4	—	0.4	
l bal	1.3	1.3	0.11	1.41	
Steel ball	2.6	4.0	0.41	4.41	
	3.9	6.8	1.18	7.98	

Table 5 Measurements of permanent deformation produced on flat steel plate and balls

These results indicate that ceramic balls do not suffer permanent deformation and that the permanent deformation produced on the flat steel plate by the ceramic balls is approximately 1.2 times the sum of the deformation produced on the flat plate by steel ball and the deformation that the steel ball undergo.

Accordingly, the static load rating of Hybrid Ceramic Bearings can be determined based on the permanent deformation of their bearing steel rings. JTEKT uses the load equal to 85% of the static load rating of steel bearings as the static load rating of the Hybrid Ceramic Bearings.

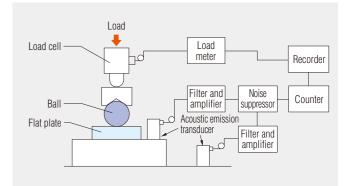


Fig. 9 Crack generating load measurement system

Impact strength of ceramic bearings

To evaluate the impact strength of ceramic bearings, ceramic balls were crushed by two methods: by a static load and an impact load. The test results are shown in Fig. 10. Fig. 11 shows the testing methods.

This figure shows that the impact strength of the ceramic bearings is almost equal to the static load strength, which means the bearings possess sufficient impact strength.

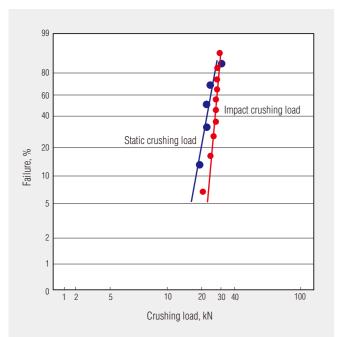


Fig. 10 Comparison of static load and impact load that crush ceramic balls

Static crushing test Load Jig made of bearing steel Ceramic balls (9.525 mm in dia.)

O Impact crushing test

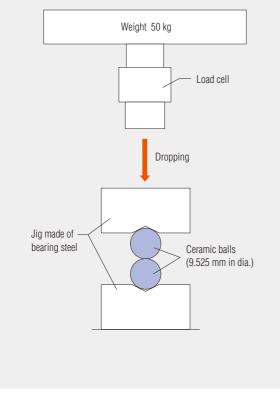


Fig. 11 Ceramic ball crushing test method

Fitting of ceramic bearings

When using ceramic bearings, it should be noted that ceramic materials are largely different from steel materials in the coefficient of linear expansion. Attention should therefore be paid to fitting stresses and temperature rises. The following are the results of evaluating the fitting of a Ceramic Bearing on a stainless steel shaft.

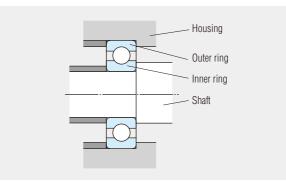


Fig. 12 Bearing fitting

Maximum stress produced by fitting

Table 6 shows the results of a static strength test conducted on a ceramic ring fitted on a stainless steel shaft. Table 7 shows the results of a dynamic strength test (running test) conducted on a ceramic ring fitted on a stainless steel shaft.

Based on the results of these tests, JTEKT makes it a rule for the maximum stress produced by interference to be no greater than 150 MPa when a ceramic inner ring is fitted on a stainless steel shaft. Consult JTEKT for applications requiring tighter fitting.

The maximum stress generated on the inner ring due to the interference with the shaft can be determined from the following equation:

$$\sigma = P_{\rm m} \cdot \frac{D_{\rm i}^2 + d^2}{D_{\rm i}^2 - d^2}$$
$$P_{\rm m} = \Delta_{\rm deff} \left[\frac{d}{E_{\rm B}} \left(\frac{D_{\rm i}^2 + d^2}{D_{\rm i}^2 - d^2} + v_{\rm B} \right) + \frac{d}{E_{\rm S}} \left(\frac{d^2 + d_{\rm 0}^2}{d^2 - d_{\rm 0}^2} - v_{\rm S} \right) \right]^{-1}$$

OTable 6 Typical results of static strength test on ceramic bearing shaft fitting

	Interference, L10 µm	Ring's fracture stress MPa
Solid shaft	50	399
Hollow shaft	68	332

O Table 7 Typical results of dynamic strength test on ceramic bearing shaft fitting

	Max. allowable interference µm	Max. allowable stress for ring MPa
Solid shaft	31	243
Hollow shaft	43	204

Fig. 13 Ceramic inner ring damaged by dynamic strength test

Influence of temperature

During operation, bearing temperature exceeds the ambient temperature. When a ceramic bearing is operated on a stainless steel shaft or in a stainless steel housing, the interference with the shaft increases due to the difference in linear expansion coefficient while the interference with the housing decreases. (When the outer ring is loose-fitted, the clearance increases.)

To determine the class of fit for a ceramic bearing, the maximum temperature during operation should be assessed carefully.

σ : Maximum circumferential stress to interference (MPa) P_{m} : Pressure of contact on fitting surface (MPa) : Inner ring bore diameter and outside diameter d, D_i (mm) : Effective interference of inner ring (mm) ⊿deff Bore diameter of hollow shaft d_0 (mm) $E_{\rm B}$, $v_{\rm B}$: Bearing's modulus of longitudinal elasticity and Poisson's ratio (MPa) Es, vs : Shaft's modulus of longitudinal elasticity and Poisson's ratio (MPa)

Ceramic Bearing Capacities

CERAMIC BEARINGS

Corrosion resistance

Table 8 shows the corrosion resistance of ceramic materials. Silicon nitride, which is used as the standard material of the ceramic bearings, is excellent in corrosion resistance. However, it may develop corrosion in a highly corrosive chemical, a high temperature, or other highly corrosive ambient condition.

Table 8 Corrosion resistance of ceramic materials

 \bigcirc : Fully resistant \bigcirc : Almost resistant \triangle : Slightly susceptible \times : Susceptible

Ceramic Corrosive solutions	Silicon nitride (standard) Si₃N₄	Corrosion resistant silicon nitride Si ₃ N ₄	Zirconia ZrO ₂	Silicon Carbide SiC
Hydrochloric acid	\bigtriangleup	0	\bigcirc	O
Nitric acid	\bigtriangleup	0	0	0
Sulfuric acid	\bigtriangleup	0	0	0
Phosphoric acid	0	0	0	0
Fluorine acid	\bigtriangleup	\bigtriangleup	×	0
Sodium hydroxide	\bigtriangleup	\bigtriangleup	0	
Potassium hydroxide	\bigtriangleup	\bigtriangleup	\bigtriangleup	
Sodium carbonate	\bigtriangleup	\bigtriangleup	\bigtriangleup	
Sodium nitrate	\bigtriangleup	\bigtriangleup	\bigtriangleup	
Water and saltwater	O	O	O	O

There are two types of ceramic corrosion: One is the corrosion of the alumina-yttria system sintering aid (Al₂O₃-Y₂O₃), which is used to bake ceramic materials. To avoid this type of corrosion, corrosion resistant silicon nitride treated with a spinel sintering aid (MgAl₂O₄) should be used. Fig. 14 shows the mass reduction and bending strength deterioration of corrosion resistant silicon nitride dipped in an acid or alkaline solution for a given period of time. The other type of corrosion is the corrosion of the silicon nitride itself. For use in a highly corrosive solution, bearings made of zirconia (ZrO₂) or silicon carbide (SiC) may be effective.

To select a ceramic bearing for use in a highly corrosive environment, its corrosion resistance to the specific condition should be carefully examined.

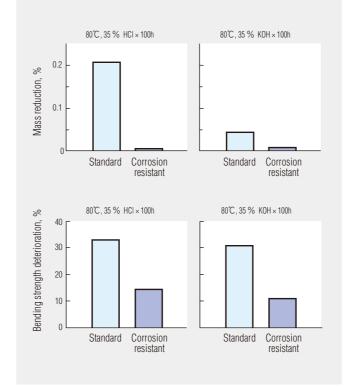


Fig. 14 Anticorrosive performance of corrosion resistant silicon nitride

Note) The corrosive natures of individual solutions differ largely depending on the concentration and temperature. Note that mixing two or more chemicals may increase the corrosivity.

Service life of corrosion resistant bearings

Table 9 lists the bearings suitable for applications requiring corrosion resistance, along with their major applications.

OTable 9 Typical corrosion resistant Ceramic Bearings

	Applications	Bearing Materials		
Applications –		Bearing Rings	Balls	
Corrosion Resistant Hybrid Ceramic Bearing	In water, alkaline environment and reactive gas	SUS630	Silicon nitride	
Ceramic Bearing	In a slightly acidic environment, alkaline environment and reactive gas	Silicon nitride	Silicon nitride	
Corrosion Resistant Ceramic Bearing	In a strongly acidic environment, strongly alkaline environment and reactive gas	Corrosion resistant silicon nitride	Corrosion resistant silicon nitride	
High Corrosion Resistant Ceramic Bearing	In a strongly acidic environment, strongly alkaline environment and corrosive gas	Silicon carbide	Silicon carbide	

When Ceramic Bearings are operated in a solution, the solution serves as a lubricant. This means the solution is closely associated with the service life of the bearings. Fig. 15 shows the service life evaluation results for three types of Ceramic Bearings under water.

The Ceramic Bearings terminate their service life due to the flaking on the bearing ring or ball surfaces.

In case of the Hybrid Ceramic Bearings, ceramic balls do not develop flaking or wear. Their service life ends due to wear attributed to the minute corrosion of stainless steel bearing rings.

When bearings are used in a solution whose lubrication performance is not

enough, such as in water, it is important to evaluate in advance the susceptibility of the bearings to corrosion and the relationship between the bearing load and wear in the solution.

SUS440C has a longer service life than SUS630; however, the former steel is not suitable for use in water because it may rust and cause contamination. Ceramic Bearings may develop wear at an early stage of use depending on the characteristics of the solution, temperature, and load. Please contact JTEKT before using Ceramic Bearings in solutions.

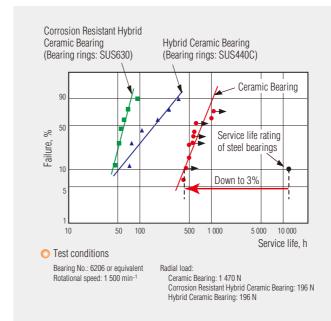


Fig. 15 Comparison in underwater service life of Ceramic Bearings

Non-magnetic performance

Bearings may be exposed to magnetic fields in some applications, including equipment associated with super conductivity, semiconductor production facilities and medical examination facililies. If steel bearings are used for such applications, the running torque may fluctuate or the magnetic field may be disturbed . Non-magnetic bearings should be used for such applications. As a non-magnetic material for such bearings, beryllium copper has conventionally been used. However the use of beryllium copper should be avoided since it contains beryllium, a substance of environmental concern.

For such applications, JTEKT supplies Hybrid Ceramic Bearings, whose rings are made of non-magnetic stainless steel and rolling elements are made of a ceramic material, or the full ceramic bearings.

	Relative permeability
Non-magnetic Hybrid Ceramic Bearings	1.01 or lower
Ceramic Bearing	1.001 or lower
(Ref.) Beryllium copper	1.001 or lower

OTable 10 Non-magnetic bearings and relative permeability

Fig. 16 shows a rolling fatigue strength evaluation result for various non-magnetic materials. As can be seen from the figure, non-magnetic stainless steel is superior to beryllium copper in rolling fatigue strength.

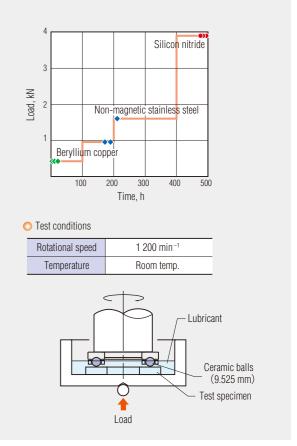


Fig. 16 Comparison of non-magnetic materials in rolling fatigue strength

Insulation

A cause of bearing failure in motors or generators is electric pitting. Electric pitting occurs when a surface in rolling contact is locally molten due to sparks produced over the very thin lubricating oil film on the surface when electricity passes through the bearing in operation.

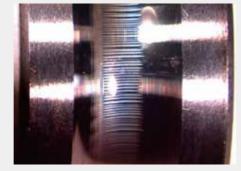
Electric pitting appears as a series of pits or a series of ridges on the surface in rolling contact, which is shown in Fig. 17 and Fig. 18.

An estimation of the mechanism that causes electric pitting on a bearing is shown in Fig. 19.



Fig. 17 Electric pitting generated on general purpose bearings (pits)

Fig. 18 Electric pitting generated on general purpose bearings (ridges)


To avoid such pitting, a bypass is provided to ensure that no electric current passes through the bearing. Another method is to use an insulating bearing that can block electric current.

Since ceramic materials exhibit an excellent insulation performance, Hybrid Ceramic Bearings consisting of ceramic rolling elements can be used as insulating bearings.

Hybrid Ceramic Bearings prevent electric pitting, also reduce bearing temperature rise, and lengthen grease service life. For these reasons, Hybrid Ceramic Bearings assure long term maintenance free operation and high speed equipment operation.

Continuous sparks of weak current

Example of electric pitting on inner ring raceway surface

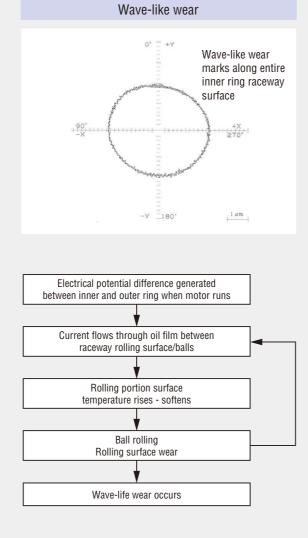
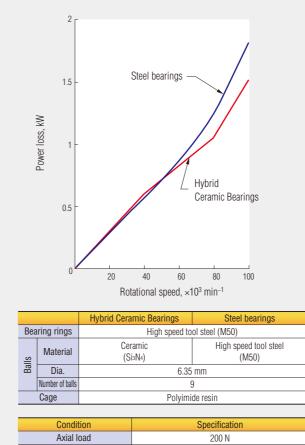


Fig. 19 Estimation of electric pitting (wave-like wear) occurrence mechanism

High-speed performance

Hybrid Ceramic Bearings, whose rolling elements are made of a ceramic material with a density lower than that of bearing steel, are most suitable for high speed applications. This is because reduced mass of rolling elements suppresses the centrifugal force of the rolling elements, as well as slippage attributable to the gyro-moment, when the bearings are in operation.


Thanks to their superior high speed performance, Hybrid Ceramic Bearings are used in turbochargers and on machine tool spindles.

Power losses at high speed

Fig. 20 compares power losses between the Hybrid Ceramic Bearings and steel bearings.

When compared to steel bearings, the Hybrid Ceramic Bearings lose smaller power during high speed operation. The power loss decreases with increasing rotational speed.

The Hybrid Ceramic Bearings also have superior antiseizure characteristics, which means that they consume smaller amount of lubrication oil and thereby reduce rolling resistance (power loss).

Axial load	200 N
Rotational speed (max.)	100 000 min ⁻¹
Lubricating oil	AeroShell Turbine Oil 500
Ambient temperature	Room temp.

Fig. 20 Comparison in power loss between Hybrid Ceramic Bearings and steel bearings

28

27

Seizure limit at high speed

Fig. 21 shows the seizure limits of Hybrid Ceramic Bearings and steel bearings. The limits were measured by gradually reducing lubricating oil feed rate. Compared with general purpose steel bearings, Hybrid Ceramic Bearings consume smaller amount of lubricating oil under the same speed condition, while they can run at a higher speed under the same luburicating oil feed rate condition.

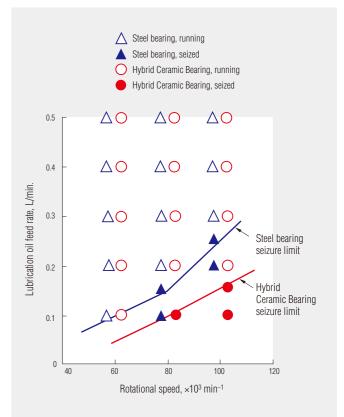


Fig. 21 Comparison between Hybrid Ceramic Bearings and steel bearings in seizure limit

1

Ceramic balls

CERAMIC BEARINGS

JTEKT also supplies Ceramic Balls (silicon nitride), which have excellent resistance to wear and seizure, and are usable in corrosive environments and ultrahigh vacuums. Other major features of these balls are excellent heat resistance (up to 800°C), high rigidity, lightweight (40% compared to bearing steel), non-magnetic, and have insulating characteristics.

The Ceramic Balls are useful in many applications such as jigs, tools, gauges, solenoid valves, check valves, other valve varieties, high grade bicycle parts, automotive parts, and machine components.

Precision

grade 1

5 and 10

40

60

Mass 2)

(per piece)

2.320 8 g

2.854 5 g

3.46 a

4.2 g

4.9 g

5.8 g

6.8 g

11.7 g

14.9 g

18.6 g

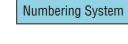
22.8 g

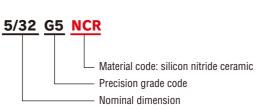
27.7 g 39.5 g

46.4 g

54.1 g

62.7 g


93.5 g


Table of Dimensions and Masses

Nominal	dimension	Nominal outside	Precision	Mass 2)	Nominal dimension		Nominal out diameter
mm	inch	diameter mm	grade 1)	(per piece)	mm	inch	mm
0.8		0.800 00		0.866 mg		7/16	11.112
1.0		1.000 00		1.691 mg		15/32	11.906
1.2		1.200 00		2.922 mg		1/2	12.700
	1/16	1.587 50		6.766 mg		17/32	13.493
2.0		2.000 00		13.530 mg		9/16	14.287 5
	3/32	2.381 25		22.836 mg		19/32	15.081 2
	7/64	2.778 12	3 and 5	36.262 mg		5/8	15.875
	1/8	3.175 00		54.129 mg		3/4	19.050
3.5		3.500 00		72.511 mg		13/16	20.637
	5/32	3.968 75		0.105 7 g		7/8	22.225
	3/16	4.762 50		0.182 7 g		15/16	23.812
	7/32	5.556 25		0.290 1 g		1	25.400
	15/64	5.953 12		0.356 8 g		1 1/8	28.575
	1/4	6.350 00		0.433 0 g		1 3/16	30.162
	17/64	6.746 88		0.519 4 g		1 1/4	31.750
	9/32	7.143 75		0.616 6 g		1 5/16	33.337
	5/16	7.937 50		0.845 8 g		1 1/2	38.100
	11/32	8.731 25	5	1.125 7 g			
	3/8	9.525 00		1.461 5 g			
	13/32	10.318 75		1.858 2 g			

Notes 1) For the grades, those specified in JIS B 1501 shall apply.

2) The masses are calculated on the basis of 3.23 g/cm³ in density.

JTEKT

OFFICES

KOYO CANADA INC. 5324 South Service Road, Burlington, Ontario L7L 5H5, CANADA TEL: 1-905-681-1121 FAX 1-905-681-1392

JTEKT NORTH AMERICA CORPORATION

-Main Office-47771 Halyard Drive, Plymouth, MI 48170, U.S.A. TEL : 1-734-454-1500 FAX: 1-734-454-7059

-Cleveland Office-29570 Clemens Road, P.O.Box 45028, Westlake, OH 44145, U.S.A. TEL : 1-440-835-1000 FAX : 1-440-835-9347

KOYO MEXICANA, S.A. DE C.V.

Av. Insurgentes Sur 2376-505, Col. Chimalistac, Del. Álvaro Obregón, C.P. 01070, México, D.F. : 52-55-5207-3860 FAX: 52-55-5207-3873

KOYO LATIN AMERICA, S.A. Edificio Banco del Pacifico Planta Baja, Calle Aquilino de la Guardia y Calle 52, Panama, REPUBLICA DE PANAMA TEL: 507-208-5900 FAX: 507-264-2782/507-269-7578

KOYO ROLAMENTOS DO BRASIL LTDA.

Avenida Brigadeiro Faria Lima, 1744 – 1st Floor – CJ. 11 São Paulo - SP - Brazil CEP 01451-001 TEL : 55-11-3372-7500 FAX : 55-11-3887-3039

KOYO MIDDLE EAST FZE

6EA 601, Dubai Airport Free Zone, P.O. Box 54816, Dubai, U.A.E. TEL : 97-1-4299-3600 FAX : 97-1-4299-3700

KOYO BEARINGS INDIA PVT. LTD.

C/o Stylus Commercial Services PVT LTD, Ground Floor, The Beech, E-1, Manyata Embassy Business Park, Outer Ring Road, Bengaluru-560045, INDIA TEL : 91-80-4276-4567 (Reception Desk of Service Office) FAX : 91-80-4276-4568

JTEKT (THAILAND) CO., LTD. 172/1 Moo 12 Tambol Bangwua, Amphur Bangpakong, Chachoengsao 24180, THAILAND TEL : 66-38-533-310~7 FAX : 66-38-532-776

PT. JTEKT INDONESIA JI. Surya Madya Plot I-27b, Kawasan Industri Surya Cipta, Kutanegara, Ciampel, Karawang Jawa Barat, 41363 INDONESIA TEL: 62-267-8610-270 FAX: 62-267-8610-271

KOYO SINGAPORE BEARING (PTE.) LTD.

27, Penjuru Lane, Level 5, Phase 1 Warehouse #05-01. SINGAPORE 609195 TEL : 65-6274-2200 FAX : 65-6862-1623

PHILIPPINE KOYO BEARING CORPORATION

6th Floor, One World Square Building, #10 Upper McKinley Road, McKinley Town Center Fort Bonifacio, 1634 Taguig City, PHILIPPINES TEL : 63-2-856-5046/5047 FAX : 63-2-856-5045

PUBLISHER

JTEKT CORPORATION NAGOYA HEAD OFFICE No.7-1, Meieki 4-chome, Nakamura-ku, Nagoya, Aichi 450-8515, JAPA

JTEKT CORPORATION OSAKA HEAD OFFICE No.5-8, Minamisemba 3-chome, Chuo-ku, Osaka 542-8502, JAPAN

Sales & Marketing Headquarters

No.5-8, Minamisemba 3-chome, Chuo-ku, Osaka 542-8502, JAPAN -

29

www.jtekt.co.jp

JTEKT KOREA CO., LTD.

Seong-do Bldg 13F, 207, Dosan-Dearo, Gangnam-Gu, Seoul, KOREA

KOREA TEL : 82-2-549-7922 FAX : 82-2-549-7923
JTEKT (CHINA) CO., LTD. Room.25A2, V-CAPITAL Building, 333 Xianxia Road, Changning District, Shanghai 200336, CHINA TEL : 86-21-5178-1000 FAX : 86-21-5178-1008
KOYO AUSTRALIA PTY. LTD. Unit 2, 8 Hill Road, Homebush Bay, NSW 2127, AUSTRALIA TEL : 61-2-8719-5300 FAX : 61-2-8719-5333
JTEKT EUROPE BEARINGS B.V. Markerkant 13-01, 1314 AL Almere, THE NETHERLANDS TEL : 31-36-5383333 FAX : 31-36-5347212 -Benelux Branch Office- Energieweg 10a, 2964 LE, Groot-Ammers, THE NETHERLANDS TEL : 31-184-606800 FAX : 31-184-606857 -Sosnowiec Branch Office- ul3 Maja14, 41-200 Sosnowiec, POLAND TEL : 48-32-720-1444 FAX : 48-32-746-7746
KOYO KULLAGER SCANDINAVIA A.B. Johanneslundsvägen 4, 194 61 Upplands Väsby, SWEDEN TEL : 46-8-594-212-10 FAX : 46-8-594-212-29
KOYO (U.K.) LIMITED Whitehall Avenue, Kingston, Milton Keynes MK10 0AX, UNITED KINGDOM TEL: 44-1908-289300 FAX: 44-1908-289333
KOYO DEUTSCHLAND GMBH Bargkoppelweg 4, D-22145 Hamburg, GERMANY TEL : 49-40-67-9090-0 FAX : 49-40-67-9203-0
KOYO FRANCE S.A. 6 avenue du Marais, BP20189, 95105 Argenteuil, FRANCE TEL : 33-1-3998-4202 FAX : 33-1-3998-4244/4249
KOYO IBERICA, S.L. Avda.de la Industria, 52-2 izda 28820 Coslada Madrid, SPAIN TEL : 34-91-329-0818 FAX : 34-91-747-1194
KOYO ITALIA S.R.L. Via Stephenson 43/a 20157 Milano, ITALY TEL : 39-02-2951-0844 FAX : 39-02-2951-0954 -Romanian Representative Office- 24, Lister Street, ap. 1, sector 5, Bucharest, ROMANIA TEL : 40-21-410-4182 FAX : 40-21-410-1178
AN TEL:81-52-527-1900 FAX:81-52-527-1911
TEL:81-6-6271-8451 FAX:81-6-6245-3712
TEL:81-6-6245-6087 FAX:81-6-6244-9007

— Value & Technology

CAT. NO. B1013E Printed in Japan '15.12-1CCH